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a b s t r a c t 

In general, for the iteration process of an evolutionary algorithm (EA), there exists the 

problem of uneven distribution of individuals in the target space for both multi-objective 

and single-objective optimization problems. This uneven distribution significantly degrades 

the population diversity and convergence speed. This paper proposes an adaptive hybrid 

evolutionary immune algorithm based on a uniform distribution selection mechanism (AU- 

DHEIA) for solving MOPs efficiently. In AUDHEIA, the individuals in the population are 

mapped to a hyperplane, which is correlated with the objective space and are clustered 

to increase the diversity of solutions. To improve the distribution of the solutions, the 

mapped hyperplane is evenly sectioned. With the constantly changing distribution dur- 

ing the iteration, a threshold as a standard for judging the distribution level is adjusted 

adaptively. When the threshold is not satisfied in the corresponding interval, the distri- 

bution enhancement module is activated. Then, the same number of individuals should 

be selected in each interval. However, sometimes, there are insufficient or no individuals 

in the interval during the iterative process. To obtain sufficient individuals, the limit opti- 

mization variation strategy of the best individual is adopted. Experiments show that this 

algorithm can escape from local optima and has a high convergence speed. Moreover, the 

distribution and convergence of this algorithm are superior to the peer algorithms tested 

in this paper. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

 

1. Introduction 

In engineering and scientific applications, such as industrial production, urban transportation, sewage treatment, and

capital operations, there are real multi-objective problems for almost every important decision. These objectives are often

incommensurable, or even conflicting. Thus, multi-objective optimization problems (MOPs) have been one of the most im-

portant research topics in recent years. 

To solve these problems, multi-objective evolutionary algorithms (MOEAs) have been studied extensively. The most fa-

mous and advanced MOEAs include the nondominated Sorting Genetic Algorithm II (NSGA-II) [9] , Strength Pareto Evolution-

ary Algorithm (SPEA2) [10] , MOEA based on decomposition (MOEA/D) [44] , and multi-objective particle swarm optimization

(MOPSO) [18,25] . In addition, as nature-inspired algorithms, multi-objective immune algorithms (MOIAs) have been pro-
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posed [37,41] . Because they are highly evolutionary, parallel and adaptively distributed, MOIAs have attracted more and

more attention. In MOIAs, only a few individuals with better convergence and diversity are selected to propagate, thus

producing multiple cloned individuals [7,28,45] . Moreover, each clone evolves better individuals through hypermutation. In

this manner, excellent individuals have more evolutionary opportunities. Therefore, MOIAs have a competitive advantage in

terms of population diversity and convergence speed compared with other MOEAs [36] . However, most MOIAs use a single

hypermutation strategy [14,29,36] , which can lead to unsatisfactory results when dealing with complex MOPs [14] . This may

be because it is rather difficult to balance the proximity and diversity. This conforms to the no-free-lunch theorem [2] . To

tackle this problem, Lin et al. [30] proposed a novel hybrid evolutionary framework for MOIAs (HEIA). This algorithm em-

ploys multiple evolutionary strategies to combine their advantages and overcome the shortcomings of any single strategy.

However, [36] the purpose of many multi-objective optimization algorithms is to find a certain number of Pareto optimal

solutions uniformly distributed along the PF, to better represent the entire PF [2,14,29,46] . Therefore, it is necessary and

meaningful to find a solution that can converge better and be distributed more widely and evenly to the PF front for the

next generation to increase the diversity of the population. In fact, there still exist two issues to be addressed for all MOEAs

during the iteration process, and HEIA is no exception, in this regard: 1) how to select individuals in the population to in-

crease the distribution of individuals during the iteration procedure [44] ; in general, the individuals are severely unevenly

distributed ., i.e., there may be many individuals residing at some areas of the objective space, while there are few or even

no individuals in other areas; and 2) supplement deficiency when there are no sufficient individuals on the Pareto front

during the solving process, which is a challenging problem. 

For the first question, the objective of multi-objective optimization is to make the solution converge uniformly as widely

as possible at the Pareto front [10] . This is because an uneven individual distribution can lead to poor population diver-

sity in the iteration procedure. Therefore, it is easy for the solutions to fall into a local optimum. Some parts of the Pareto

front may be empty and the convergence speed decelerates. To overcome these issues, the sharing mechanism proposed

by Goldberg and Richardson [13] can be used. This approach to producing new individuals considers the similarity levels

among individuals in the population. However, it requires extensive calculation resources. Zhu and Chen [47] adopted the

population distribution entropy to portray the diversity and distribution of a population. However, this method lacks the

characterization of relations between individuals within groups. Therefore, it is not easy to regulate the diversity and dis-

tribution during the evolutionary process. Corne et al. [3,6] presented grid technology in which the individuals with high

packing density in the grid are deleted. Nonetheless, the poles cannot be deleted. Knowles and Corne [24] suggested an

adaptive grid technique. This algorithm adaptively adjusts the boundary according to the current individual distribution in

every evolution. Morse [33] proposed a clustering analysis method to maintain the diversity of the population. Han et al.

[16] proposed a method based on the population spacing and population distribution entropy. However, the above methods

just delete the individuals with small crowding distances. They cannot resolve the problem of no or insufficient individuals

in some regions during the iterations. In addition, MOEA/D can obtain a set of well-distributed solutions by its diversity

maintenance among subproblems, which is implemented by a uniform distribution of weight vectors. In MOEA/D, the num-

ber of weight vectors is fixed, and only one individual is chosen in each weight vector interval. For simple MOPs, MOEA/D

exhibits good performance. However, the results are not satisfactory for complex MOPs [21] . 

Based on the above discussions, this paper presents an adaptive hybrid evolutionary artificial immune algorithm based

on a uniform distribution mechanism (AUDHEIA). In this algorithm, HEIA is used for its ability to solve complex MOPs [30] .

However, the problem of the individuals being unevenly distributed during the evolution process significantly affects the

population diversity and convergence speed. To solve this problem, the hyperplane is evenly divided, and an equal number

of individuals are selected from each interval. However, most Pareto fronts are curves or surfaces. How dimension reduction

is performed is very important. For this purpose, motivated by literature [38] , the individuals are mapped to a hyperplane

that is correlated with the objective space, and they are clustered to increase the diversity of solutions. The results show

that this can achieve faster convergence toward the Pareto-optimal front without loss in diversity. However, how to choose

individuals from each interval remains a challenging question, and there is no experience to be found in the literature. An

indicator is required to measure the distribution of individuals in each interval, and a threshold to judge the distribution

standard is also necessary. Because the distribution of individuals changes unceasingly during the iterations, the threshold

needs to be adjusted adaptively in this paper. When clustering individuals, if the distribution levels in the corresponding

intervals do not meet the threshold, the distribution enhancement module is activated. When the threshold is satisfied, a

certain number of superior individuals are selected from each cluster. Then the distribution of individuals can be improved.

However, in the selection process, there are sometimes insufficient individuals or even no individuals in some intervals

during the iteration process. Regarding this problem, the individuals with poor diversity values are deleted in most of the

literature, and this issue has only rarely been studied. To solve this problem, a limit optimization variation strategy of

the best individual is utilized in this paper to produce new antibodies. To verify the performance of AUDHEIA, the inverted

generation distance (IGD) function and spacing (SP) function are selected to test diversity and convergence. The experimental

results show that our proposed algorithm’s inverted generational distance (IGD) and spacing (SP) values are higher than

those of other strategies. Therefore, the modified algorithm has better population diversity and distribution, and it converges

faster than peer algorithms. 

The main contributions of this paper are summarized as follows: 
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1) A distribution measurement indicator is proposed to measure the distribution of individuals in a population. The

individuals are mapped to a hyperplane that corresponds to the objective space, and they are clustered on this hy-

perplane. The hyperplane is equally divided, and the number of segmentations is adjusted adaptively in the iteration

process. When the number of species in the interval is less than the threshold, the distribution enhancement module

is activated. 

2) A distribution enhancement module is introduced to increase the distribution of the individuals. In the population se-

lection process, individuals with the same number are selected in every interval. Furthermore, the choice mechanism

is offered. 

3) A limit optimization variation strategy of the best individual is taken to generate local solutions. Sometimes the indi-

viduals are insufficient or not present at all in the iteration process, so two variation strategies are used to supplement

the insufficient individuals. The first strategy can effectively im prove the local search ability. The other can prevent

the algorithm from falling into local optima, thus improving the search speed. 

4) The threshold for judging the distribution level of individuals is adjusted adaptively. During the iterations, the dis-

tribution of individuals changes unceasingly. Therefore, this paper designs an adaptive threshold adjustment strategy

based on the evolutionary state of the population and the distribution of individuals. 

The remainder of this article is organized as follows. In Section 2 , MOPs and MOIAs are briefly reviewed. In Section 3 ,

the details of the AUDHEIA framework are described. In Section 4 , six experiments are conducted. Finally, some conclusions

are presented. 

2. Background 

2.1. Multi-objective optimization problems 

Without loss of generality, an MOP that consists of n decision variables and m objective functions can be described as

follows: 

min F ( x ) = 

(
f 1 ( x ) , · · · , f j ( x ) , · · · , f m 

( x ) 
)T 

x = ( x 1 , · · · , x i , · · · , x n ) ∈ �

l i ≤ x i ≤ u i , i = 1 , 2 , · · · , n (1)

where x is a vector of decision variables, � is an n -dimensional decision space, F ( x ) ∈ R 

m is an m -dimensional objective space,

f j ( x ) ( j = 1, 2, …, m ) is the j th objective function, x i is the i th decision variable. l i and u i are the upper and lower bounds of

the i th decision variable, respectively. 

Definition 1 (Pareto Dominance) . For two given decision vectors x and y , x is said to Pareto dominate y if and only if the

formulas (2a)-(2b) hold, and this is recorded as x > y . 

(∀ i ∈ { 1 , 2 , · · · , m } : f i (x ) ≤ f i (y )) 

∧ (∃ k ∈ { 1 , 2 , · · · , m } : f k (x ) < f k (y )) (2)

Definition 2 (Pareto-Optimal) . A solution x is said to be Pareto-optimal if and only if 

¬∃ y ∈ � : y > x (3)

Definition 3 (Pareto-Optimal Set) . The collection P S that is composed of all Pareto-optimal solutions is described as the

Pareto-optimal set of solutions. 

Definition 4 (Pareto-Optimal Front) . The set P F includes the values of all the objective functions corresponding to the

Pareto-optimal solutions in P S , that is: 

P F = 

{
F ( x ) = ( f 1 ( x ) , f 2 ( x ) , · · · f m 

( x ) ) 
T 
∣∣x ∈ P s 

}
(4)

In this paper, PF true is used to refer to the true (or optimal) P F as defined in (4) , while PF known is employed to represent

the best solutions produced by an algorithm. 

2.2. Immunology terms in MOIAs 

An artificial immune system is mainly based on the information processing mechanism of a biological immune system

[48] . It is developed to solve complex problems. To describe the algorithm better, several common immunological terms for

an artificial immune system are described as follows: 

Definition 5 (Antigen) . An antigen refers to the problem and constraints to be solved. It is defined as the objective func-

tion(s) in an MOP. 
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Fig. 1. Nondominated solution sets of objective function f 1 ( x ) and f 2 ( x ) found on the ZDT1 problem. (a) from the 1st to the 10th iteration–HEIA. (b) from 

the 1st to the 20th iteration–HEIA. (c) from the 1st to the 10th iteration–AUDHEIA. (d) from the 1st to the 20th iteration–AUDHEIA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 6 (Antibody) . An antibody refers to a candidate solution of the problem. It is described as a candidate solution

in the decision space for an MOP. 

Definition 7 (Affinity) . An affinity refers to the adaptive measure of candidate solutions or problems that correspond to the

value(s) of the objective function(s). 

Yoo and Hajela [40] introduced the first related work on MOIA, and the concept of antibody and antigen affinity was

introduced. To imitate the biological immune system, the clone operator is usually chosen by MOIAs to select and clone

antibodies with high affinities. Then, the decision variables are altered by the hypermutation. In the process, the aim is

to evolve solutions toward having better and better affinities. Since then, many other MOIAs have been designed, most of

which have excellent performance. According to the characteristics of the immune system, MOIAs can be divided into three

categories: 1) clonal selection methods; 2) immune network methods; and 3) hybrid methods (i.e., combinations of immune

systems and other heuristic methods). 

Among them, Coello and Cortés [4] proposed a clonal selection based multi-objective immune algorithm (MISA). In this

method, only antibodies with high affinity can multiply and produce multiple clonal antibodies, and the adaptive grid

method is used to maintain the diversity of the population. In [5] , the performance of MISA is further improved [22] .

The immune dominant cloning multi-objective algorithm was introduced. The method uses antibody anti-affinity to re-

flect the similarity between antibodies. This will guide cloning operations to select the most efficient search area (i.e., the

least crowded area). In addition, Hu [17] proposed a new MOIA using a multimodal model. Six affinity assignment methods

were used in this method, i.e., cloning, hypermutation and immunosuppression. Immunosuppression refers to the removal

of similar antibodies in variable and target spaces. 

In addition, an artificial immune system based on vectors [11] has been extended by the artificial immune network

algorithm (opt-ainet) to solve MOPs. In this case, two cycles of evolution are carried out. The purpose of internal circulation

is to utilize the search space, while the purpose of external circulation is to avoid redundancy caused by similar antibodies.

In [12] , a new weight-based MOIA was proposed. This method uses a random weighted sum method as a fitness allocation

scheme and combines it with a new truncation algorithm to eliminate similar individuals. The results show that the method

has low computational complexity and can obtain Pareto-optimal solutions with good distributions. 

However, most of the above MOIAs only use simple hypermutation operators to evolve antibodies [12,36,42,43] . The use

of simple evolutionary methods in MOIAs may lead to monotonous search patterns, which makes existing MOIAs unable to

deal with complex MOPs (for example, the UF test problem [32] ). In fact, the hybrid mutation method has been studied

in immune algorithms [19,20,27,39] , and good results have been achieved. For example, Sindhya et al. [38] introduced a

hybrid framework for MOEAs, which uses local search modules to speed up convergence. Tang and Wang [39] proposed a

new hybrid MOEA that combines the concepts of individual optimum and global optimum from PSO. In addition, Lin et al.

[30] proposed a novel hybrid evolutionary framework for MOIAs (HEIA), which selects multiple high-affinity antibodies from

antibodies for cloning and then performs SBX and crossover operations. This hybrid evolutionary strategy can overcome the

limitations of using a single strategy and has better results in solving different types of MOP problems. Even though HEIA

has advantages in terms of convergence speed and population diversity [30] , the individuals in the population exhibit the

uneven distribution problem during the iteration process. This problem occurs in many MOPs. 

For the ZDT test problems, Fig. 1 demonstrates the individual evolution process at different stages. Fig. 1 (a) and (b)

present HEIA’s nondominant solutions to the ZDT1 problem. Fig. 1 (a) is the nondominant solution of the objective functions

f 1 ( x ) and f 2 ( x ) in the first to tenth iterations of HEIA. Because of the initial stage of the algorithm, the population is randomly

initialized. Therefore, as seen from Fig. 1 (a), individuals in the population are evenly distributed in the target space at the

beginning of the iteration. However, with the continuous evolution of individuals in the population, if the distribution of

individuals in the population is not taken into account when selecting the elite solution, it is likely that some individuals

will be concentrated in some regions and that some regions will have very few or no individuals. This will seriously affect

the diversity of the population, which may cause a Pareto solution to fall into a local optimum and affect the convergence
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Fig. 2. Proposed framework of AUDHEIA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the algorithm. Fig. 1 (b) gives the nondominated solutions of the objective functions f 1 ( x ) and f 2 ( x ) of HEIA in the 1st

to 20th iterations. It can be seen that in the 10th to 20th iterations, due to the uneven distribution of individuals in the

population and the insufficient diversity of the population, the individuals in the population spend a long time searching

in the target space with dense individual aggregation. It was not until the 20th iteration that a very few individuals began

to look for other regions. In this manner, the convergence rate of Pareto solution is greatly reduced, and the difficulty of

extending and evenly distributing Pareto solution to PF front is also increased. This phenomenon exists in almost all of the

test problems. Due to the page limitation, they are not introduced here. However, most MOEAs just delete the individuals

with smaller crowding distances to increase the diversity of the population. When the Pareto front is continuous, how to

solve the empty or insufficient problem in some regions during iterations is a particularly challenging problem. In addition,

there are few studies concerning this aspect. 

To address this problem, a hybrid evolutionary artificial immune algorithm with adaptive uniform distribution is used to

solve the multi-objective optimization problem. At the same time, to compare with HEIA, the nondominant solutions for the

ZDT1 problem are also given in Fig. 1 (c) and (d). As seen from Fig. 1 (c), individuals in the population have been relatively

uniformly distributed in the target space. In this manner, the diversity and distribution of the population have been greatly

improved. This reduces the possibility of a Pareto solution falling into a local optimum. Fig. 1 (d) shows the nondominated

solutions of the objective functions f 1 ( x ) and f 2 ( x ) of AUDHEIA in the 1th to 20th iterations. It can be seen that, because

the individual distribution in the previous population is more uniform, when very few better individuals find the Pareto

front, the rest of the individuals can be more quickly and evenly distributed on the Pareto front. Therefore, in the process of

iteration, it is necessary to increase the uniformity of the individual distribution in the population, to improve the diversity

of the population. 

To summarize, it is necessary to ensure that individuals are distributed uniformly and increase the population diversity

when individuals in the population are unevenly distributed during the iteration process. 

3. Proposed framework and implementation 

The framework of AUDHEIA is shown in Fig. 2 . The algorithm starts by initializing the population and setting some related

parameters. Then, mapping and clustering operations are performed to increase the diversity of solutions. At the same time,

to increase the distribution of solutions, a distribution judgment module is added. When the distribution condition is not

satisfied, the distribution enhancement module is activated to obtain uniformly distributed solutions in the iteration process.

Afterwards, individuals with higher affinity are cloned and randomly divided into subpopulations of equal size. To avoid the
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Table 1 

Initialization. 

Set g = 0 //generation number 

for i = 1 to N 

for i = 1 to n 

x i = l i + rand () ×( u i - l i ); //initialize each variable of x i 
end for 

Evaluate the objective functions; 

end for 

Add the nondominated antibodies to the elitist archive E a ; 

Calculate the crowding distance for each antibody in E a ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

limitation of adopting a single strategy, each subgroup evolves independently with different evolutionary strategies. Finally,

the nondominated antibodies of each subgroup are stored in an elitist archive to prepare for the next iteration [30] . 

According to the AUDHEIA framework shown in Fig. 2 , antibodies mainly undergo six important steps: mapping and

clustering, distribution judgment, distribution enhancement, cloning, evolution and selection to approach the PF. In addition,

Table 1 gives the initial pseudocode, where N is the size of the population and n is the number of decision variables. All

nondominated antibodies in the initial population are added to the elite archive E a to calculate the crowding distance. The

other main steps are shown below. 

3.1. Mapping and clustering 

In each iteration process, to increase the distribution of individuals, the approach described in this paper needs to divide

the target space evenly into equal intervals and select the same number of individuals from each subinterval. In the opti-

mization process, the target space is usually a surface or curve. When the target space is evenly partitioned, all coordinate

axes need to be segmented, which increases the computational complexity of the algorithm. In the later stage, when the

distribution judgment module decides that the individual distribution in a region is insufficient or empty, a certain number

of solutions must be added to the region. If the area is a curve or a surface, it will be difficult to determine the exact loca-

tion. In this module, motivated by literature [38] , all individuals in the population are mapped vertically to the hyperplane

H . In this manner, only the x-axis (two-dimensional) or x-axis and y-axis (three-dimensional) are segmented evenly, which

reduces the computational complexity. H is an ( m -1) dimensional linear subspace in m -dimensional Euclidean space, and m

is the number of objective functions. The specific expressions are as follows: 

H = 

{
F ∈ R 

k : 〈 W 

s , F 〉 + b s = 0 

}
(5) 

where b s is a constant (here b s = −1), <> is the Euclidean inner product, F is the target vector, and 

W 

s = 

(
1 

f max 
1 

, · · · , 
1 

f max 
i 

, · · · , 
1 

f max 
m 

)
(6) 

where f i 
max is the maximum value of objective function f i in population P . If f i 

max = 0, then f i 
max = 10 −06 . The orthogonal

mapping PI of the target vector F corresponding to the individual in the population on the hyperplane H is as follows: 

P I = 

1 − 〈 W 

s , F 〉 
‖ 

W 

s ‖ 

2 
W 

s + F (7) 

From formula (7) , we can obtain population P ′ by mapping all individuals in population P to H . Then the individuals in

the mapped population P ′ are distributed in a straight line or in a plane. At the same time, to increase the diversity of the

population, P ′ is clustered. The corresponding subpopulation of each cluster is P i , i = 1, 2,…, K , where K is the number of

clusters. At the same time, the cluster quality index Q is used to evaluate the diversity of P ′ . The formula is as follows: 

Q = 

K ∑ 

i =1 

1 

| P i | 
∑ 

C j ∈ P i 
E 
(
σi , C j 

)
(8) 

where |P i | is the number of individuals of cluster i . σ i is the centroid of cluster i , C j is the j th individual of cluster i , and

E ( σ i , C j ) is the Euclidean distance from the individual C j to the centroid σ i of cluster i . Fig. 3 illustrates the method in detail,

in which circles 1, 2, 3, 4, 5 and 6 represent different individuals in the population P . Squares a, b and c correspond to the

orthogonal mappings of individuals 1, 2-3, and 5-6 on the hyperplane H , respectively. As seen from the graph, although

individuals 2, 3, and 4 in P are different, when they map to H , they are represented by the same individual b in population

P ′ . In addition, a, b and c belong to the same cluster of individuals, and when searching locally, they will produce the same

Pareto-optimal solution, which reduces the diversity of the population. Therefore, it is very important to maintain a well-

distributed population P ′ , and produce different Pareto-optimal solutions in different areas of the Pareto front. To obtain

better descriptors for this model, the pseudocode is shown in Table 2 . 
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Fig. 3. Mapping of individuals on a Hyperplane. 

Table 2 

Mapping and cluster module. 

Input: size of population, N ; number of clusters, K ; and population, P . 

Output: Cluster quality index at generation t, Q ; clusters, P t 
i 

at generation t . 

Step 1. Map the population P to the hyperplane H , get population P ′ . %(5)–(7) 

Step 2. Cluster the population P ′ into K clusters. 

Step 3. Evaluate the diversity of P ′ . %(8) 

Step 4. Replace the subpopulation in each cluster on the hyperplane H with corresponding individuals in P . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Distribution judgment 

To solve the above problems, the target space corresponding to the population P ′ mapped to the hyperplane H is evenly

divided according to the results obtained in section A. Details are shown in Fig. 4 . The target space is evenly divided into

six intervals (the number of intervals is adjusted adaptively according to the actual range of the target space corresponding

to the population P ′ ). We can clearly see that there are five indi viduals in the first interval (C a1 , C b1 , C b2 , C c1 and C c2 ) and

three clusters (C a , C b , and C c are the centers of clusters, respectively). C a1 belongs to cluster C a , C b1 and C b2 , belong to

cluster C b , and C c1 and C c2 belong to cluster C c . The second interval has an individual, a cluster, while the third interval

has no individuals. Therefore, individuals in the population are unevenly distributed, and the types of clusters are also very

uneven, so it is difficult to produce different Pareto-optimal solutions in different areas of the Pareto front. To increase the

distribution of individuals in the population, a certain number of individuals of different types are selected in each interval.

The specific description is as follows: 

D = ( D 1 , · · · , D i , · · · , D q ) (9)

where D is the set of intervals, D i is the i th interval, i ∈ (1, q ), and q is the number of intervals. β= ( β1 , …β j , …βm 

) is

the set of interval ranges corresponding to the objective function value, and β j = f j 
max −f j 

min is the interval range of the j th

objective function value. f i 
max and f j 

min are the maximum and minimum values of the j th objective function in population

P ′ , respectively. β j = ϕ × 10 τ , ϕ is the effective value of the scientific counting method of β j , and τ is its power exponent;

q = � ϕ. In interval D i , the set of clusters is as follows: 

D i = 

(
P i 1 , · · · , P i j , · · · , P ir 

)
(10)

In the equation above, P ij is the j th cluster in the i th interval, 0 ≤ j ≤ r , and r is the number of clusters in the interval D i .

The individuals in cluster P ij are as follows: 

P i j = 

(
C j1 , · · · , C jo , · · · , C jl 

)
(11)
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Fig. 4. The distribution of the population. 

 

 

 

 

 

 

 

 

 

 

 

 

C jo is the o th individual in the j th cluster P ij , 0 ≤ o ≤ l , and l is the number of individuals in cluster P ij . To judge the

distribution of individuals in different interval populations, the mechanism of distribution judgment is as follows: {
r i ( t ) < θ ( t ) case 1 

r i ( t ) = θ ( t ) case 2 

(12) 

where r i (t) is the number of clusters in the i th interval D i of the t th iteration. θ ( t ) is the threshold of the t th iteration. 

Case 1: The distribution enhancement module is activated. 

Case 2: The individuals of clusters are sorted from large to small in accordance with the crowding distance, and the first

θ ( t ) individuals of the interval are selected. 

Because the distribution of individuals is constantly changing during the iteration process, the value of θ ( t ) adaptively

changes according to the distribution information PS of the population. The specific formula is as follows: 

P S(t + 1) = 

√ 

1 

N − 1 

N ∑ 

i =1 

(
M̄ ( t + 1 ) − M i ( t + 1 ) 

)2 
(13) 

where PS ( t + 1) is the distribution information of the population in the ( t + 1)th iteration, and M i ( t + 1) is the minimum

Manhattan distance of the i th antibody and other individuals. M̄ ( t + 1) is the average of the minimum Manhattan distances

for all antibodies. Then, the threshold adjustment strategy is as follows: 

θ (t + 1) = 

{ 

θ (t) + 1 P S(t + 1) > P S(t) 
θ (t) − 1 P S(t + 1) < P S(t) 

θ (t) P S(t + 1) = P S(t) 
(14) 

θ (1) = ceil 

(
N 

K 

)
(15) 

min θ (t) = max r (16) 

where θ ( t + 1) is the threshold of the ( t + 1)th iteration, θ (1) is the initial threshold, and min θ ( t ) is the minimum of θ ( t ).

To improve the convergence rate, the quotient of population number and cluster number is rounded as the initial threshold

because of the poor distribution of individuals in the early evolution stage. In addition, to ensure that each cluster has

individuals to be selected, the maximum number of clusters in all intervals is used as the minimum threshold. As shown

in Fig. 4 , if the number of individuals of the population in the entire target space is 11 and the number of clusters is

9, then θ (1) = 1 (the value of θ (1) is far greater than min θ ( t ) in the actual iteration process); min θ ( t ) = 3, and assuming

that the current threshold is min θ (t), we can see that the number of clusters in the first interval is 3, which satisfies the
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Table 3 

Distribution Judgment. 

Input: The range of X -axis and Y -axis on the hyperplane H , Xml and Yml; center points of clustering, σ i , size of population, N , the individuals 

number of each interval, N ( D i ), the population on the hyperplane H , P ′ . 
Output: The threshold θ ( t + 1), the number of clusters in the i th interval, r i ( t ); the individuals of the j th cluster in the i th interval, P ij , the 

index of cluster centers in the i th interval, μi . 

Step 1 . The hyperplane H is evenly divided. %(9) 

Step 2 . Calculate the number of clusters in each interval. %(10) 

Step 3 . Record the individuals which correspond to every cluster in each interval. %(11) 

Step 4 . Calculate the PS information PS ( t + 1) and threshold θ ( t + 1). %(13)–(16) 

Step 5. Judge whether the individuals can meet the distribution in each interval. %(12) 

Fig. 5. Diversity enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

distribution; and the number of clusters in the second to sixth interval is less than 3, which does not satisfy the distribution,

and the distribution enhancement module will be activated. The details of the distribution judgment module are shown in

the pseudocode in Table 3 . 

3.3. Distribution enhancement 

As shown in Fig. 4 , some intervals have fewer clusters than others, and some intervals are even empty. How to select

individuals is a problem that will need to be solved. Therefore, to maintain a good distribution of individuals in the popu-

lation, each interval chooses the same number of individuals belonging to different clusters. As shown in Fig. 5 , D 1 (t) and

D 2 (t) are two different intervals of the t th iteration. There are three individuals in interval D 1 (t), of which a1 and a2 belong

to cluster A and b 1 belongs to cluster B . There are six individuals in interval D 2 (t). Among them, c 1 belongs to cluster C , e 1
and e 2 belong to cluster E , and f 1 , f 2 and f 3 belong to cluster F . At time t , θ ( t ) individuals are selected for each interval. As

shown in the figure, every interval in D ( t + 1) should contain θ (t) individuals when iterating the ( t + 1)th. However, in the

actual optimization process, the number of interval individuals is larger than θ ( t ), such as interval D 2 ( t ). In some cases, the

number of interval individuals is less than θ ( t ), such as interval D 1 ( t ). For interval D 1 ( t ), how to supplement the remain-

ing θ (t)- D 1 (t) individuals will be a challenging problem. In this paper, we use the limit optimization mutation strategy to

supplement the insufficient individuals in the interval. However, in addition, for the interval D 2 (t) in the graph, each cluster

selects the top  θ (t)/3 � individuals according to the crowding distance, and the remaining θ (t) −3 ∗ θ (t)/3 � individuals are

selected from the three clusters randomly. To describe the detailed process, the pseudocode is shown in Table 4 . In addition,

according to the actual distribution, the methods are as follows: 
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Table 4 

Distribution enhancement. 

Input: The number of intervals, q ; the index of cluster centers in the i th interval, μi ; The threshold θ ( t + 1), the number of clusters in the i th 

interval, r i (t); the individuals in the j th clustering in the i th interval, P ij , the number of all individuals in the i th interval, | D i |. 

Output: The set of individuals that supplemented by individual variation, A ; the index of the selected individuals, δ. 

for i = 1: q 

if r i ( t ) < θ ( t ) 

if r i ( t ) = = 0 

The individuals are chosen by (17)–(18) 

else 

if k � = 0 

The individuals are chosen by (21); 

else 

The individuals are chosen by (20); 

end 

end 

else 

Return case 2 in formula (17); 

end 

end 

 

 

 

 

 

 

 

1) The number of cluster centers C j in the i th interval is zero: ⎧ ⎨ 

⎩ 

N 

(
P i j 

)
≥ θ ( t ) case 1 

N 

(
P i j 

)
< θ ( t ) case 2 

N 

(
P i j 

)
= 0 case 3 

(17) 

where N ( P ij ) is the number of individuals of the j th cluster in the i th interval. 

Case 1: select the first θ ( t ) individuals of the interval according to the crowding distance. 

Case 2: select all the individuals of the interval. The remaining θ ( t )- N ( P ij ) individuals are supplemented by individuals

local variation. Here, the individuals with the largest crowding distance are chosen to mutate. 

Case 3: because there are no individuals in the interval, two individuals that are nearest to this interval are selected

from the adjacent interval to mutate, and then θ ( t ) individuals can be obtained. However, when the following

formulas (18) are satisfied more than 10 times continuously, this interval is considered to be discontinuous. 

d i = min 

j,l 

{ 

m ∑ 

k =1 

∣∣ f k 
(
x j 

)
− f k ( x l ) 

∣∣} 

x j ∈ D i −1 , x l ∈ D i +1 , i = 1 , 2 , · · · , q 

d i ≥ length ( | D i | ) (18) 

where d i is the distance between individuals in two adjacent intervals. D i −1 and D i + 1 are the ( i −1)th and ( i + 1)th

interval, respectively. 

2) The number of cluster centers C j in the i th interval is nonzero: 

When the interval is not empty, individuals are selected from clusters as follows: 

S i = f loor ( θi / r i ) 

k = θi − S i ∗ r i 

R i = 

(
I 1 , · · · , I j , · · · , I k 

)
(19) 

S i is the number of individuals who should be evenly selected from each cluster. k is the number of remaining individuals

who should be selected, I j is the identifier of the j th remaining individuals, 0 ≤ j ≤ k , k ∈ R, and R i is the set of I j .

According to different values of k , the methods of individual selection are different. They are shown below: 

a) The number of remainders, k , is zero: {
N( P i j ) ≥ S i case 1 

N( P i j ) < S i case 2 

(20) 

Case 1: select the first S i individuals of the j th cluster in the i th interval according to the crowding distance. 

Case 2: select all individuals of the j th cluster in the i th interval. The remaining S i - N ( P ij ) individuals are supple-
mented by individual variation. Here, the individual with the largest crowding distance is chosen to mutate. 
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Fig. 6. Limit optimization variation strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) The number of remainders, k , is nonzero: 

When the number of remaining individuals is nonzero, the methods are as defined below: {
N( P i j ) ≥ S i + k case 1 

N( P i j ) < S i + k case 2 

(21)

Case 1: select the first S i individuals of the interval according to the crowding distance. The remaining k individuals

are selected from cluster 1 to C j randomly. If the cluster P ij has been selected η times, then the selection starts

from the ( S i + η + 1)th individual. 

Case 2: select all of the individuals of the j th cluster in the i th interval, when N ( P ij ) < S i . The remaining S i - N ( P ij )

individuals are supplemented by individual variation. When S i < N ( P ij ) < S i + k , the former S i individuals are

selected from the cluster P ij . In addition, if the individuals from P ij are selected η times and N ( P ij ) > S i + η,

then the selection starts from the ( S i + η + 1)th individual. If N ( P ij ) < S i + η, then reselect randomly. 

3.4. Local variation strategy 

To solve the problem of insufficient or zero individuals in the interval mentioned in the previous sections, this paper

adopts the extreme optimization mutation strategy. When there are insufficient individuals in the interval, we need to find

the individuals with the largest congestion distance in the interval. At the same time, when there are zero individuals in the

interval, we need to find the two individuals closest to the interval. Then, two optimization mutation strategies are used to

mutate the selected individuals. As shown in Fig. 5 , the individuals in interval D 1 (t) are insufficient, and then the individuals

with the largest crowding distance a 2 are selected to mutate. In Fig. 4 , the third interval is empty, and the two individuals

closest to the interval are selected, namely, C d1 and C e1 . Then, through two mutation strategies, a 2 , C d1 and C e1 are adopted

to generate new individuals. 

The detailed mutation strategies are shown in Fig. 6 , C 1a , C 2a and C 2b are individuals in the second interval, and C 2a

is selected as an individual requiring variation according to nondominant ranking and crowding distance. According to the

pattern indicated by the arrow, we can see that five new individuals are generated by C 2a mutation. C 2a.1 , C 2a.2 , C 2a.3 , and

C 2a.4 are generated by the first mutation strategy and C 2a ∗1 by the second mutation strategy. 

1) The first mutation strategy 

To effectively im prove the local search ability and thereby improve the calculation accuracy, only one decision variable

is mutated at a time for the selected object [27] . In addition, according to the distribution enhancement module,

assuming that the number of individuals that need to be generated is ψ , the calculation formulas are given as follows:

C jo = ( x 1 , · · · , x i , · · · x n ) 0 < i ≤ n 

x ′ = x + ρ · x max ( x ) 0 < i ≤ n (22)
i i i 
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where x i is the decision variable that needs to mutate. x max ( x i ) is the maximum variable value of x i . x i 
’ is the decision

variable after mutation. 

ρ = 

{
( 2 α) ( 

1 / ( 1+ ε ) ) − 1 

1 − [ 2 ( 1 − α) ] ( 
1 / ( 1+ ε ) ) 

x max ( x i ) = max [ x i − l i , u i − x i ] 0 < i ≤ n (23) 

where α is a random variable between 0 and 1; ε∈ R , and it is the shape parameter; here, ε is set to 11 [46] . This

variation operation has strong local adjustment ability because only one decision variable can be mutated at a time.

However, only a small range can be searched. To avoid falling into a local optimum, and to improve the search speed,

the second mutation strategy is proposed in this paper. 20% ×ψ local solutions are produced by this strategy (rounded

up). The method is given as follows: 

2) The second mutation strategy 

C ∗jo = ( x ′ 1 , · · · x ′ i , · · · , x ′ n ) 0 < i ≤ n (24) 

k = 1 , 2 , · · · , [ 0 . 2 ψ ] 

x ′ i = λx i 0 < λ < 1 . 2 (25) 

where λ∈ (0, 1.2) is a random number. ψ + [0.2 ψ ] local solutions are generated by the above two strategies. However,

when solutions approximate the Pareto front, the system may become unstable when using the second mutation

strategy. To avoid this situation, only the first mutation strategy can be used, when PS( t + 1) = PS( t ) according to

formula (14) , which is seen as possibly approaching the Pareto front. 

3.5. Evolutionary strategies 

In the proposed framework, the population is randomly divided into multiple subpopulations after cloning, and multiple

evolutionary strategies are adopted for these subpopulations separately. Then, the risks of using a single strategy can be

mitigated. In addition, the global search capability and its robustness can be enhanced when solving different types of

complicated MOPs [30] . Here, two groups of evolutionary operators are used. The first one is the simulated binary crossover

(SBX), which is followed by a polynomial-based mutation [14] . Additionally, DE is a very powerful recombination operator,

which is especially suitable for complicated problems [7,28,45] . 

3.6. Full algorithm of AUDHEIA 

The main components of AUDHEIA are introduced through the above sections. They include clustering, mapping, dis-

tribution judgment, distribution enhancement and local variation strategy. Other details are described in the pseudocode

of Table 5 . Here, t and g are the current and the maximum number of generations, respectively. After initialization, the

antibodies are randomly generated, and the value of the objective function is calculated. Then, the initial population is pro-

duced. Following this, the individual distribution judgment and distribution enhancement strategies are given. The specific

methods are introduced from the above sections. After that, the main loop begins. At first, the antibodies with high affinities

are copied. Then, they are randomly assigned to two subpopulations, and two evolutions are used by these subpopulations

[30] , respectively. Later, the antibodies with high fitness values are selected into the elite archive E. If the stopping condition

is not met, recalculate 3–13 repeatedly until the maximum number of iterations is reached. At the end, the nondominated

solutions in E are used as the final PF known . 

4. Experiments 

4.1. Test problem 

In this paper, various standard test functions are used to test the performance of the AUDHEAI algorithm. As a set of the

most widely used test problems, ZDT problems are first selected. However, the characteristics of ZDT are not comprehen-

sive enough, e.g., such as the problems of variable linkages and objective function multimodality cannot be inspected, and

thus the ZDT problems cannot completely reflect algorithm performance. To better test the performance of the AUDHEAI

algorithm, bi-objective WFG problems [26] are also adopted. These problems have the following characteristics: convex-

ity, concavity, discontinuity, nonuniformity, and the existence of many local PFs [19,46] . Moreover, the three-objective DTLZ

problems are used to further test the performance of AUDHEAI. Its performance in handling MOPs with more than two

objectives [15] can be tested. In total, 21 test problems (ZDT1-ZDT4, ZDT6, WFG1-WFG9 and DTLZ1–DTLZ7) are used for our

experimental studies. For ZDT1–ZDT3 problems, the number of decision variables is 30, while the number of decision vari-

ables in ZDT4, ZDT6, and all the WFG and DTLZ problems is 10. In the WFG problems, the ten decision variables consist of

eight positional parameters and two distance parameters. The details of the ZDT, WFG and DTLZ test problems are available

in [15,19,46,48] , respectively. 
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Table 5 

Complete algorithm of AUDHEIA. 

1. Initialization: The size of population, N ; iterative number, g ; the decision variables number, n ; mutation parameter, p m ; crossing 

parameter, p c ; variation range, x max , x min ; the size of elitism archive, n E . 

2. Produce initial population; 

3. Add the non-dominated antibodies to the elitist archive E a ; 

4. mapping and clustering to the hyperplane; 

5. A cluster analysis is carried out on antibodies; 

6. calculate the crowding distance for each antibody; 

7. calculate population distribution; 

8. if r i (t) < θ ( t ) 

9. activate the distribution enhancement; 

10. else 

11. select the antibodies to elitism archive E according to the crowding distance; 

12. end 

13. select n E antibodies with high affinities; 

14. while t < g 

15. clone the antibodies according to the crowding distance; 

16. evolve the population using SBX and DE; %[30] 

17. selection for E a 
18. evaluate convergence and distribution, IGD and SP ; 

19. if μ > 10 –4 

20. calculate 3–13 repeatedly; 

21. else 

22. output E a 
23. end 

24. t = t + 1; 

25. end while 

26.output E a ; 

 

 

 

 

 

 

 

 

 

 

4.2. Performance measures 

In this thesis, the following performance measures are adopted to verify the performance of our proposed AUDHEIA. 

4.2.1. Inverted generational distance (IGD) 

IGD [31] is used to examine the convergence and performance of algorithms simultaneously. The calculation formula is

as follows: 

IGD ( P ∗new 

, P new 

) = 

∑ 

x ∈ P ∗new 
d ( x, P new 

) 

| P ∗new 

| (26)

where d ( x , P new 

) is the Euclidean distance between the solution x and the closest solution in the set P new 

from x . P new 

is an

approximation to the PF achieved by the algorithm. P ∗new 

is a set of known uniformly distributed solutions along the PF in

the objective space. A smaller value of IGD indicates better diversity and convergence to the PF. 

4.2.2. Spacing (SP) 

SP is used to measure the range variance of the neighboring solutions in the known Pareto front. It is defined as: 

SP = 

√ 

1 

N s − 1 

N s ∑ 

i =1 

( ̄u − u i ) 
2 (27)

u i = min 

j,l 

{ 

m ∑ 

k =1 

∣∣ f k 
(
x j 

)
− f k ( x l ) 

∣∣} 

ū = 

N s ∑ 

i =1 

u i / N s (28)

where Ns is the number of Pareto-optimal solutions. ū is the average of ui . j , l = 1, 2, …, Ns , and fk ( xj ) is the k th objective

function value of the j th solution. A smaller value of SP indicates more uniform distribution of the obtained Pareto-optimal

solutions. 

4.3. Experimental settings 

In our experiments, to evaluate the performance of AUDHEIA, six types of nature-inspired heuristic algorithms for solving

MOPs are subsequently compared. They are NSGA-II [9] , SPEA2 [10] , AbYSS [35] , MOEA/D [28] , SMPSO [34] and HEIA [30] .
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Table 6 

Parameters settings of all the algorithms compared. 

Algorithms Parameter settings 

NSGA-II N = 100, p c = 0.9, p m = 1/ n , ηc = 20, ηm = 20 

SPEA2 N = 100, p c = 0.9, p m = 1/ n , ηc = 20, ηm = 20 

MOEA/D N = 100, CR = 1.0, F = 0.5, p m = 1/ n , ηm = 20, T = 20, δ = 0.9, n r = 2 

AbYSS N = 100, N RefSet1 = 10, N RefSet2 = 10, p c = 0.9, p m = 1/ n , ηc = 20, ηm = 20 

SMPSO C 1 ∈ [1.5, 2.5], C 2 ∈ [1.5, 2.5], p m = 1/ n , ηm = 20 

HEIA N = 100, NA = 20, p c = 1.0, p m = 1/ n , ηc = 20, ηm = 20, CR = 1.0, F = 0.5, T = 20, δ = 0.9 

AUDHEIA N = 100, NA = 20, p c = 1.0, p m = 1/ n , ηc = 20, ηm = 20, CR = 1.0, F = 0.5, T = 20, δ = 0.9 

Table 7 

Performance IGD comparison of results on the ZDT test problems. 

Problems Algorithms 

NSGA-II[30] SPEA2[30] AbYSS[30] MOEA/D[30] SMPSO[30] HEIA[30] AUDHEIA 

ZDT1 Mean 4.95E-03 4.26E-03 3.90E-03 1.75E-02 3.68E-03 3.90E-03 3.72E-03 

Std 1.89E-04 1.09E-04 1.16E-04 5.51E-03 2.61E-05 6.57E-05 3.68E-05 

Rank 6 − 5 − 4 ≈ 7 − 1 + 3 − 2 

ZDT2 Mean 5.06E-03 4.64E-03 4.24E-03 1.33E-02 3.81E-03 3.96E-03 3.70E-03 

Std 2.17E-04 1.86E-03 2.15E-03 5.41E-03 3.24E-05 5.23E-05 2.15E-05 

Rank 6 − 5 − 4 − 7 − 2 ≈ 3 − 1 

ZDT3 Mean 5.68E-03 5.93E-03 1.91E-02 6.04E-02 4.48E-03 4.43E-03 4.39E-03 

Std 2.96E-03 5.11E-03 2.38E-02 2.27E-02 2.53E-04 5.41E-05 2.32E-05 

Rank 4 − 5 − 6 − 7 − 3 − 2 ≈ 1 

ZDT4 Mean 7.28E-03 1.98E-02 1.05E-02 3.12E-01 3.77E-03 3.87E-03 3.72E-03 

Std 2.14E-03 2.51E-02 1.73E-02 2.34E-01 4.44E-05 2.00E-04 3.02E-05 

Rank 4 − 6 − 5 − 7 − 2 ≈ 3 − 1 

ZDT6 Mean 8.29E-03 1.55E-02 3.04E-03 2.45E-03 3.03E-03 3.02E-03 2.68E-03 

Std 8.47E-04 2.32E-03 1.13E-04 7.09E-04 1.93E-04 1.29E-04 8.56E-05 

Rank 6 − 7 − 5 ≈ 1 + 4 ≈ 3 − 2 −
Rank Sum 25 27 24 28 12 14 7 

Final Rank 5 6 4 7 2 3 1 

better / worse / similar 0/5/0 0/5/0 0/4/1 1/4/0 1/2/2 0/4/1 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse than, and similar to the 

ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level ρ = 0.05, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All of the algorithms have exhibited a competitive performance when solving MOPs. Thus, a comparison with the above

algorithms can present a holistic assessment of the proposed AUDHEIA algorithm. 

Refer to the literature [9,10,14,28,29,34–36] for the setting of the parameters of the compared algorithms. The details are 

shown in Table 6 . It is worth noting that the parameters of the compared algorithms are adjusted to resolve most of the

MOPs. To make it fair, the parameters of AUDHEIA are set depending on them. In Table 6 , p m 

is the mutation probability, p c is

the crossover probability, N is the size of the population, and ηc and ηm 

are the distribution indexes of SBX and polynomial

mutation, respectively. For AbYSS, N RefSet1 and N RefSet2 are the sizes of RefSet1 and RefSet2, respectively. In MOEA/D, T defines

the size of the neighborhood in the weight coefficients, n r is the maximum number of child solutions that take over from

parent solutions and δ dictates the chosen probability that parent solutions are chosen from T neighbors. The two control

parameters C 1 and C 2 are randomly set in the interval [1.5, 2.5] in SMPSO. 

For the ZDT problems, the settings of N and NA are shown in Table 6 , and the maximum number of functional evaluations

was set to 25,0 0 0. Depending on the difficulty and complexity of the MOP, the size of the population and the maximum

number of function evaluations are adjusted appropriately. For more complex WFG and three-objective DTLZ problems, the

sizes of the population are set to 200 and 500, respectively. In addition, the maximum numbers of function evaluations are

all set to 10 5 . The values of N RefSet1 , N RefSet2 , and NA are set in proportion to the size N of the population. The remaining

parameters are given in Table 5 . We run each algorithm on each problem instance 30 times. In addition, the mean IGD

values and the corresponding standard deviations (std) are selected to reflect the algorithms’ performances. The bold values

describe the best entries in the table. Moreover, to evaluate the performance of the algorithms using statistics, the Wilcoxon

rank sum test is used in our experiments. Here, the significance level is ρ = 0.05. 

4.4. Results 

4.4.1. Comparisons on the ZDT test problems 

a) Comparison of the IGD index: The results of all algorithms on the ZDT problems are listed in Table 7 . The parame-

ters and results are all derived from [30] . From simulation results, the mean values of NSGA-II, SMPSO, HEIA and AUDHEIA

are lower than 10 −3 . Thus, they are good approximations of PF true for all ZDT problems. For ZDT1, ZDT2 and ZDT3 prob-
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Fig. 7. Nondominated solution sets found by AUDHEIA and MOEA/D on the ZDT problems. (a) ZDT1–AUDHEIA. (b) ZDT2–AUDHEIA. (c) ZDT3–AUDHEIA. (d) 

ZDT4–AUDHEIA. (e) ZDT6–AUDHEIA. (f) ZDT1–MOEA/D. (g) ZDT2–MOEA/D. (h) ZDT3–MOEA/D. (i) ZDT4–MOEA/D. (j) ZDT6–MOEA/D. (For interpretation of 

the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lems, SPEA2 represents good convergence. Moreover, AbYSS exhibits good performance on ZDT1, ZDT2, and ZDT6. However,

MOEA/D performs poorly on ZDT1-ZDT4 problems, although it has the best performance on ZDT6. AbYSS and MOEA/D are

unable to approach all of the disconnected parts of PF true in some runs, because ZDT3 is a discrete problem. In addition,

ZDT4 has many local PFs, which increases the difficulty of searching for PF true . However, AbYSS, SPEA2 and MOEA/D could

not effectively address the ZDT4 problem. For the ZDT6 problem, SPEA2 appeared to perform the worst due to it is uneven

search. Under Wilcoxon’s rank sum test, in Table 7 , we can also see that HEIA has a similar result to AbYSS on ZDT1 and

ZDT6, as well as to SMPSO on ZDT3 and ZDT6. The third-to-last line labeled “Rank Sum” expresses the final ranks of all the

algorithms. In addition, it can be found that the top two ranks are AUDHEIA and SMPSO from the Final Rank row, while

MOEA/D received the worst rank. The last row “better/worse/similar” indicates the number of test problems. They represent

better than, worse than, or similar to that of AUDHEIA. From this row, we can see that AUDHEIA is better than any other

algorithm. 

When the result is close to 10 −3 , the solution sets can sufficiently approximate the PF true . Therefore, the algorithms are

relatively indistinguishable when graphed. The PF known obtained by AUDHEIA on all of the ZDT problems are illustrated

in Fig. 7 . To distinguish the algorithms easily when graphed, MOEA/D is chosen as the comparison in Fig. 7 . We choose

the Pareto-optimal set that has the IGD value that is the closest to the mean IGD value in 30 runs. In Fig. 7 , the PF true is

marked in blue, and the PF known that is achieved by AUDHEIA is labeled in red. We notice that the set of AUDHEIA can

distribute uniformly along the PF true on all of the ZDT problems. However, MOEA/D presents bad performance in some ZDT

problems, especially for the ZDT4 problem. In Table 7 , the performance rankings of all the algorithms are between AUDHEIA

and MOEA/D. Therefore, AUDHEIA exhibits the best performance for the ZDT problems. 

To further explore the performance results for different algorithms, the box plots of the IGD results on the ZDT algorithms

are presented in Fig. 8 . The results demonstrate that the performance of AUDHEIA is superior to that of other algorithms for

the ZDT2, ZDT3 and ZDT4 problems. It obtains the minimum mean square deviation and Std values. Although the errors of

AUDHEIA are slightly larger than those of SMPSO and MOEA/D for ZDT1 and ZDT6 problems, the performance of AUDHEIA,

generally speaking, is the best. 

b) Comparison of the SP index: In Table 8 , six algorithms are used to compare the SP performance with AUDHEIA. These

algorithms are NSGA-II [9] , SPEA2 [10] , AbYSS [35] , MOEA/D [28] , SMPSO [34] and HEIA [30] . All of the parameters are

derived from the reference papers. We run each algorithm 30 times. The average values of the results are listed in Table 8 .

One can notice that, the Mean and Std SP values of AUDHEIA are the smallest on the ZDT series test problems compared

with the six other algorithms. Furthermore, the SP performance of AUDHEIA is similar to that of AbYSS on ZDT6. Again,

notice that the SP performances of HEIA are superior to those of SMPSO on ZDT6. Moreover, the four test problems (ZDT1,

ZDT2, and ZDT4) are similar to HEIA. In addition, AbYSS ranks in second place on the ZDT3 and ZDT6 problems. From the

Rank Sum, the SP performance of AUDHEIA is obviously better than that of other algorithms. HEIA and ABYSS are the second

and third ranks, respectively. However, MOEA/D has the worst result. Beyond that, the SP performances of NSGA-II, SPEA2,

and SMPSO are between those of AbYSS and MOEA/D. 
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Table 8 

Performance SP comparison of results on the ZDT test problems. 

Problems Algorithms 

NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA AUDHEIA 

ZDT1 Mean 0.3429 0.3215 0.1098 0.3752 0.0750 0.0734 0.0551 

Std 0.0976 0.0188 0.0169 0.0590 0.0108 0.0086 0.0072 

Rank 6 − 5 − 4 7 − 3 ≈ 2 − 1 

ZDT2 Mean 0.3778 0.3338 0.1382 0.3374 0.0733 0.0717 0.0557 

Std 0.0340 0.0329 0.1136 0.0956 0.0134 0.0101 0.0082 

Rank 7 − 5 − 4 − 6 − 3 ≈ 2 − 1 

ZDT3 Mean 0.7463 0.7570 0.6296 0.9774 0.7182 0.7295 0.4962 

Std 0.0199 0.0131 0.1232 0.0281 0.0369 0.0695 0.0183 

Rank 5 − 6 − 2 − 7 − 3 − 4 ≈ 1 

ZDT4 Mean 0.3564 0.5129 0.1859 0.9669 0.0888 0.0857 0.0728 

Std 0.0248 0.3404 0.1190 0.1366 0.0103 0.0090 0.0067 

Rank 5 − 6 − 4 − 7 − 3 ≈ 2 − 1 

ZDT6 Mean 0.3613 0.6496 0.0998 0.1609 0.3033 0.1579 0.0920 

Std 0.0330 0.3393 0.0105 0.0315 0.4503 0.0288 0.0067 

Rank 6 − 7 − 2 ≈ 4 − 5 − 3 − 1 

Rank Sum 29 29 16 31 17 13 5 

Final Rank 6 ≈ 5 3 7 4 2 1 

better / worse / similar 0/7/0 0/7/0 0/6/1 0/7/0 0/7/0 0/7/0 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse 

than, and similar to the ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level 

ρ = 0.05, respectively. 

Fig. 8. Box-plots of the IGD results obtained by AUDHEIA on (a) ZDT1, (b) ZDT2, (c)ZDT3, (d) ZDT4, (e) ZDT6. (1, 2, 3, 4, 5, 6 and 7 in the horizontal axis 

stand for NSGAII, SPEA2, AbYSS, MOEA/D, SMPSO, HEIA , and AUDHEIA .). 

Fig. 9. Box-plots of the SP results obtained by AUDHEIA on (a) ZDT1, (b) ZDT2, (c)ZDT3, (d) ZDT4, and (e) ZDT6. (1, 2, 3, 4, 5, 6, and 7 in the horizontal 

axis stand for NSGAII, SPEA2, AbYSS, MOEA/D, SMPSO, HEIA and AUDHEIA, respectively.). 

 

 

 

 

To further explore the SP performances of the various algorithms, box-plots are plotted in Fig. 9 . The results show that

AUDHEIA has the smallest SP values and that the box distances are also the least. Furthermore, outliers seldom occur. In

addition, the results of AUDHEIA are close to those of SMPSO and HEIA on the ZDT2, and ZDT4 test problems. However, the

SP performance of AUDHEIA is obviously better than that of these two algorithms on ZDT3. Finally, according to the above

analysis, we can draw the conclusion that AUDHEIA exhibits a better distribution and more stable performance. 
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Fig. 10. Nondominated solution sets found by all the algorithms on WFG1. (a) WFG1–HEIA. (b) WFG1–MOEA/D. (c) WFG1–SPEA2. (d) WFG1–SMPSO. (e) 

WFG1–AUDHEIA. (f) WFG1–AbYSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2. Comparisons on the WFG test problems 

a) Comparison of the IGD index: In Fig. 10 , the convergences of all the algorithms on WFG1 are verified with simulation

results. After 30 independent runs, the nearest set from the mean IGD is plotted in Fig. 10 . It is observed that some algo-

rithms can hardly approach the PF true because there are many local minima. SMPSO and AbYSS fail to find the PF true . SPEA2

can just approach half of PF true . HEIA and MOEA/D can approximate PF true , but the final sets of PF known appear with nonuni-

form distribution along the PF true . One can notice that the PF known of AUDHEIA is distributed uniformly across the PF true . In

Table 9 , for the WFG problems, the comparative results of different algorithms are illustrated. The parameters and results

are all derived from [30] . The results show that AUDHEIA performs best on WFG1, WFG6, and WFG8. On WFG2, WFG3,

and WFG7, SMPSO achieves the best results. In addition, AbYSS exhibits the optimal performance for WFG4. It can be seen

from Wilcoxon’s rank sum test that AUDHEIA achieves similar results compared to SMPSO and HEIA on WFG6 and WFG7, to

SPEA2 on WFG5 and WFG9, and to MOEA/D on WFG2. Compared to ZDT problems, WFG problems seem more difficult, but

in the Final rank row, we can notice that the AUDHEIA results on all of the WFG problems are the best. HEIA and SMPSO

achieve the second and third ranks, respectively. Beyond that, the fourth, fifth, sixth and seventh ranks are SPEA2, MOEA/D,

AbYSS, and NSGA-II, respectively. 

b) Comparison of the SP index: As in Table 10 , six algorithms are used to compare the SP performance with AUDHEIA

in TABLE X. These algorithms are NSGA-II [9] , SPEA2 [10] , AbYSS [35] , MOEA/D [28] , SMPSO [34] and HEIA [30] . All of

the parameters are derived from the reference papers. We run each algorithm 30 times. The average values of the results

are listed in Table 10 . As seen, the Mean and Std SP values of AUDHEIA are the smallest on most of the WFG series test

problems, except for WFG2 and WFG4. Furthermore, the SP performance of AUDHEIA is similar to that of AbYSS on WFG4,

WFG7 and WFG9. Again, notice that the SP performances of AbYSS are superior to those of HEIA on WFG2, WFG4, WFG5,

WFG7 and WFG9. From the Rank Sum, the SP performance of AUDHEIA is the best out of all of the algorithms. ABYSS and

HEIA are ranked second and third, respectively. However, NSGAII has the worst result. Beyond that, the SP performances of

the other algorithms are between those of HEIA and NSGAII. 

To further explore the SP performances of various algorithms, box-plots are plotted in Fig. 11 . The results show that

AUD-HEIA has the smallest SP values on WFG1, WFG3, and WFG5-WFG9. In addition, the box distances are also the lowest.
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Table 9 

Performance IGD comparison of results on the WFG test problems. 

Problems 

Algorithms 

NSGA-II[30] SPEA2[30] AbYSS[30] MOEA/D[30] SMPSO[30] HEIA[30] AUDHEIA 

WFG1 Mean 6.29E-01 1.22E-00 1.29E-00 1.60E-02 6.20E-02 6.15E-03 5.81E-03 

Std 2.18E-01 2.07E-01 2.41E-01 7.81E-03 1.51E-01 1.76E-04 1.36E-04 

Rank 5 − 6 − 7 ≈ 3 − 4 − 2 − 1 

WFG2 Mean 1.04E-01 9.33E-02 1.77E-01 4.44E-02 4.81E-03 7.82E-02 1.26E-02 

Std 7.35E-02 6.53E-02 7.91E-02 2.61E-02 2.73E-04 7.54E-02 6.89E-03 

Rank 6 − 5 − 7 − 3 ≈ 1 + 4 − 2 

WFG3 Mean 7.40E-03 6.07E-03 6.08E-03 6.73E-03 5.52E-03 5.79E-03 5.61E-03 

Std 3.39E-04 4.01E-04 9.31E-04 6.41E-06 6.52E-04 4.17E-04 3.76E-04 

Rank 7 − 4 − 5 ≈ 6 − 1 + 3 ≈ 2 

WFG4 Mean 6.90E-03 6.26E-03 5.11E-03 8.07E-03 6.74E-03 5.46E-03 5.25E-03 

Std 3.91E-04 1.76E-04 1.33E-04 1.33E-03 3.68E-04 1.64E-04 1.01E-04 

Rank 6 + 4 − 1 + 7 − 5 − 3 − 2 

WFG5 Mean 6.54E-02 6.49E-02 6.47E-02 6.54E-02 6.53E-02 6.50E-02 6.35E-02 

Std 3.07E-03 3.19E-03 3.26E-03 1.68E-04 8.85E-04 3.19E-03 3.19E-03 

Rank 7 ≈ 3 ≈ 2 + 6 ≈ 5 ≈ 4 ≈ 1 

WFG6 Mean 8.64E-03 1.27E-02 1.35E-02 7.59E-03 7.30E-03 7.07E-03 6.75E-03 

Std 9.77E-04 6.86E-03 8.99E-03 4.01E-03 1.28E-03 1.17E-03 1.03E-03 

Rank 5 − 6 − 7 − 4 − 3 ≈ 2- 1 

WFG7 Mean 8.72E-03 7.18E-03 7.71E-03 8.82E-03 5.78E-03 6.20E-03 5.93E-03 

Std 4.79E-04 5.52E-04 2.65E-03 6.33E-04 8.73E-05 1.18E-04 9.65E-05 

Rank 6 − 4 − 5 − 7 − 1 ≈ 3 ≈ 2 

WFG8 Mean 2.26E-02 5.13E-02 6.79E-02 2.04E-02 2.70E-02 7.89E-03 6.63E-03 

Std 3.28E-03 7.98E-03 7.25E-02 2.29E-03 3.65E-03 4.25E-04 3.96E-04 

Rank 4 − 6 − 7 − 3 − 5 − 2 − 1 

WFG9 Mean 7.96E-03 6.45E-03 7.15E-03 7.48E-03 7.86E-03 6.47E-03 6.21E-03 

Std 3.89E-04 2.91E-04 2.31E-03 3.73E-04 7.83E-04 1.68E-04 1.02E-04 

Rank 7 − 2 − 4 − 5 − 6 − 3 ≈ 1 

Rank Sum 53 40 45 44 31 26 13 

Final Rank 7 4 6 5 3 2 1 

better / worse / similar 0/9/0 1/8/0 2/5/2 0/8/1 2/5/2 0/7/2 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse than, and similar to 

the ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level ρ = 0.05, respectively. 

Fig. 11. Box-plots of the SP results obtained by AUDHEIA on (a) WFG1, (b) WFG2, (c)WFG3, (d) WFG4, (e) WFG5, (f) WFG5, (g) WFG5, (h) WFG5, (i) WFG5. 

(1, 2, 3, 4, 5, 6, and 7 in the horizontal axis stand for NSGAII, SPEA2, AbYSS, MOEA/D, SMPSO, HEIA and AUDHEI, respectively.). 
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Table 10 

Performance SP comparison of results on the WFG test problems. 

Problems 

Algorithms 

NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA AUDHEIA 

WFG1 Mean 9.01E-01 6.30E-01 4.41E-01 5.97E-01 1.06E-00 4.15E-01 3.67E-01 

Std 7.74E-03 3.60E-02 7.25E-02 1.01E-01 7.06E-02 6.78E-02 1.13E-02 

Rank 6 − 5 − 3 − 4 − 7 − 2 − 1 

WFG2 Mean 9.00E-01 8.30E-01 7.80E-01 1.14E-00 8.11E-01 8.41E-01 8.25E-01 

Std 7.73E-03 1.46E-02 7.08E-03 1.47E-03 2.91E-03 3.96E-03 1.13E-03 

Rank 6 − 4 − 1- 7 ≈ 2 + 5 − 3 

WFG3 Mean 9.01E-01 2.99E-01 5.34E-02 3.43E-01 5.04E-02 4.78E-02 4.57E-02 

Std 6.78E-03 8.87E-03 9.50E-03 9.44E-05 4.09E-03 2.87E-03 1.45E-03 

Rank 7 − 5 − 4 ≈ 6 − 3 + 2 − 1 

WFG4 Mean 9.00E-01 3.60E-01 1.29E-01 4.50E-01 5.54E-01 2.12E-01 1.38E-01 

Std 9.09E-03 1.77E-02 1.12E-02 2.08E-02 3.77E-02 5.54E-03 2.82E-03 

Rank 7 + 4 − 1 ≈ 5 − 6 − 3 − 2 

WFG5 Mean 8.98E-01 3.77E-01 1.31E-01 4.64E-01 1.40E-01 1.35E-01 1.16E-01 

Std 8.49E-03 1.75E-02 1.86E-02 4.37E-03 1.32E-02 3.63E-03 6.93E-03 

Rank 7 − 5 + 2 + 6 − 4 ≈ 3 ≈ 1 

WFG6 Mean 9.01E-01 3.50E-01 1.32E-01 4.10E-01 1.28E-01 1.22E-01 1.09E-01 

Std 8.66E-03 2.01E-02 2.69E-02 9.92E-05 1.01E-02 7.57E-03 2.29E-03 

Rank 7 − 5 − 4 − 6 − 3 ≈ 2 − 1 

WFG7 Mean 9.01E-01 3.48E-01 1.05E-01 4.10E-01 1.33E-01 1.26E-01 1.02E-01 

Std 6.49E-03 1.95E-02 9.48E-03 8.97E-05 8.71E-03 7.41E-03 4.18E-03 

Rank 7 − 5 − 2 ≈ 6 − 4 ≈ 3 − 1 

WFG8 Mean 8.99E-01 7.07E-01 6.58E-01 6.17E-01 9.08E-01 5.66E-01 4.97E-01 

Std 8.95E-03 7.91E-02 9.44E-02 5.65E-02 1.13E-01 4.31E-02 3.85E-02 

Rank 6 − 5 − 4 − 3 − 7 − 2 − 1 

WFG9 Mean 8.97E-01 3.81E-01 1.39E-01 4.69E-01 2.40E-01 3.58E-01 1.25E-01 

Std 9.41E-03 1.70E-02 1.16E-02 5.88E-03 1.82E-02 3.37E-02 4.45E-03 

Rank 7 − 5 ≈ 2 ≈ 6 − 3 − 4 − 1 

Rank Sum 60 43 23 49 39 26 12 

Final Rank 7 5 2 6 4 3 1 

better / worse / similar 0/9/0 1/8/0 2/5/2 0/8/1 2/5/2 0/9/0 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse than, and 

similar to the ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level ρ = 0.05, respec- 

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, according to the above analysis, we can draw the conclusion that AUDHEIA exhibits a better distribution and more

stable performance. 

4.4.3. Comparisons on the DTLZ test problems 

a) Comparison of the IGD index: Based on the above experimental results, AUDHEIA has excellent performance for the

ZDT and WFG problems. However, these problems have two objectives. To further research AUDHEIA, the DTLZ problems

[15] , which are three-objective problems, are used to detect its performance. As shown in Fig. 12 , because DTLZ2 has many

local PFs and DTLZ7 is discontinuous, they are difficult to solve. To compare the performances of the different algorithms,

DTLZ2 and DTLZ7 are adopted to draw the results of the algorithms. A first observation is that MOEA/D is unable to ap-

proximate the PFtrue of DTLZ2 and DTLZ7 completely. In addition to that, the PF true can be found by SMPSO, while the

distribution of solutions is uneven. Compared with the above algorithms, AUDHEIA is well close to PF true and is uniformly

distributed. 

The comparison results for all of the DTLZ test problems are shown in Table 11 . The parameters and results are all

derived from [30] . For the problems of DTLZ1, DTLZ3 and DTLZ6, AUDHEIA obtains the best performance. SPEA2 exhibits the

optimal performance on DTLZ2 and DTLZ7. MOEA/D and AbYSS achieve the best results on DTLZ4 and DTLZ5, respectively.

In addition, from the Wilcoxon’s rank sum test, it can be seen that AUDHEIA exhibits properties similar to those of HEIA on

DTLZ1 and DTLZ3, those of MOEA/D on DTLZ2, those of NSGA-II on DTLZ4 and DTLZ6, and those of AbYSS on DTLZ5. The

Final rank row shows that AUDHEIA has the first rank and that SMPSO gets the second rank. Meanwhile, HEIA and SPEA2

obtain the third and fourth ranks, respectively. AbYSS, MOEA/D and NSGA-II obtain the fifth through seventh ranks. 

b) Comparison of the SP index: In Table 12 , the same experiments are used to test the SP performance of AUDHEIA.

All the parameters are derived from the reference papers, and we run each algorithm 30 times. The average values of the

results are listed in Table 12 . A first observation is that the Mean and Std SP values of AUDHEIA are the smallest on the

DTLZ2, DTLZ3, DTLZ6 and DTLZ7 test problems. In addition, the SP performance of AUDHEIA is similar to that of AbYSS on

DTLZ5. Furthermore, MOEA/D and SPEA2 have the optimal SP performances on DTLZ1 and DTLZ4, respectively. From the
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Fig. 12. Nondominated solution sets found by all the algorithms on DTLZ2 and DTLZ7. (a) DTLZ2–AUDHEIA. (b) DTLZ2–SMPSO. (c) DTLZ2–MOEA/D. (d) 

DTLZ7–AUDHEIA. (e) DTLZ7–SMPSO. (f) DTLZ7–MOEA/D. 

Table 11 

Performance IGD comparison of results on the DTLZ test problems. 

Problems 

Algorithms 

NSGA-II[30] SPEA2[30] AbYSS[30] MOEA/D[30] SMPSO[30] HEIA[30] AUDHEIA 

DTLZ1 Mean 2.18E-02 3.32E-02 2.53E-02 4.23E-02 1.28E-02 1.16E-02 1.01E-02 

Std 1.98E-02 3.48E-02 5.12E-02 1.17E-01 3.82E-04 3.98E-04 1.75E-04 

Rank 4 − 6 − 5 − 7 − 3 − 2 − 1 

DTLZ2 Mean 3.07E-02 2.38E-02 3.02E-02 2.82E-02 3.12E-02 3.08E-02 2.68E-02 

Std 7.43E-04 2.76E-04 7.26E-04 1.76E-04 7.21E-04 7.57E-04 4.06E-04 

Rank 5 ≈ 1 + 4 − 3 − 7 ≈ 6 ≈ 2 

DTLZ3 Mean 5.04E-02 3.83E-01 3.67E-02 1.45E-01 3.10E-02 3.04E-02 2.85E-02 

Std 1.95E-02 2.08E-01 1.63E-02 5.13E-01 5.73E-04 6.47E-04 5.21E-04 

Rank 5 − 7 − 4 − 6 − 3 ≈ 2 − 1 

DTLZ4 Mean 3.08E-02 2.09E-02 2.81E-02 1.87E-02 2.60E-02 3.24E-02 2.92E-02 

Std 2.39E-03 1.52E-03 2.07E-03 6.04E-04 6.46E-03 2.33E-03 2.02E-03 

Rank 6 − 2 + 4 ≈ 1 + 3 + 7 − 5 

DTLZ5 Mean 1.07E-03 8.73E-04 7.96E-04 1.85E-03 8.16E-04 8.44E-04 8.12E-04 

Std 4.20E-05 3.41E-05 3.11E-05 2.06E-05 2.97E-05 3.29E-05 3.01E-05 

Rank 6 − 5 − 1 + 7 − 3 ≈ 4 − 2 

DTLZ6 Mean 1.41E-01 2.75E-01 2.04E-02 1.72E-03 7.87E-04 7.96E-04 7.85E-04 

Std 3.91E-02 2.09E-02 1.92E-02 7.27E-06 4.16E-05 4.17E-05 4.17E-05 

Rank 6 − 7 − 5 − 4 − 2 ≈ 3 − 1 

DTLZ7 Mean 3.05E-02 2.39E-02 1.20E-01 7.99E-02 3.35E-02 3.21E-02 2.98E-02 

Std 8.03E-04 3.98E-04 1.37E-01 8.61E-02 1.53E-03 1.12E-03 9.56E-04 

Rank 3 ≈ 1 + 7 − 6 − 5 − 4 − 2 

Rank Sum 35 29 30 34 26 28 14 

Final Rank 7 4 5 6 2 3 1 

better / worse / similar 0/7/0 3/4/0 1/5/1 1/6/0 1/4/2 0/7/0 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse than, and similar to 

the ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level ρ = 0.05, respectively. 
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Table 12 

Performance SP comparison of results on the DTLZ test problems. 

Problems 

Algorithms 

NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA AUDHEIA 

DTLZ1 Mean 0.8515 0.8082 0.8639 0.4981 0.7095 0.6885 0.5987 

Std 0.0240 0.2435 0.0260 0.0308 0.0384 0.0280 0.0071 

Rank 6 − 5 − 7 ≈ 1 + 4 − 3 − 2 

DTLZ2 Mean 0.9079 0.6149 0.7952 0.9285 0.6210 0.5583 0.3301 

Std 0.0342 0.0380 0.0433 0.0260 0.0330 0.0323 0.0323 

Rank 6 − 3 − 5 − 7 − 4 ≈ 2 − 1 

DTLZ3 Mean 0.8164 1.3626 0.7887 0.9227 0.6320 0.6070 0.5780 

Std 0.0254 0.0938 0.0472 0.1248 0.0286 0.0119 0.0054 

Rank 5 − 7 − 4 − 6 − 3 − 2 − 1 

DTLZ4 Mean 0.7241 0.5864 0.6926 0.8012 0.6376 0.7533 0.6768 

Std 0.0082 0.0151 0.0216 0.0228 0.0308 0.0075 0.0052 

Rank 5 − 1 + 4 − 7 - 2 + 6 − 3 + 

DTLZ5 Mean 0.4536 0.3734 0.1104 0.7554 0.1398 0.1410 0.1184 

Std 0.0788 0.0334 0.0071 0.0132 0.0364 0.0019 0.0029 

Rank 6 − 5 − 1 ≈ 7 − 3 - 4 ≈ 2 

DTLZ6 Mean 0.5146 0.7616 1.0958 0.7653 0.1042 0.1255 0.0928 

Std 0.0177 0.0325 0.1894 0.0019 0.0222 0.0047 0.0028 

Rank 4 − 5 − 7 − 6 ≈ 2 - 3 − 1 

DTLZ7 Mean 1.0353 0.8668 0.7721 1.0749 0.7390 0.6988 0.2943 

Std 0.0663 0.0324 0.0645 0.0604 0.0956 0.0994 0.0223 

Rank 6 − 5 − 4 ≈ 7 + 3 − 2 − 1 

Rank Sum 38 31 32 41 21 22 11 

Final Rank 6 4 5 7 2 3 1 

better / worse / similar 0/7/0 1/6/0 0/6/1 1/6/0 1/6/0 0/7/0 / 

“+ ”, “−”,and “≈” indicate that the results obtained by the algorithm are significantly better than, worse 

than, and similar to the ones obtained by AUDHEIA using Wilcoxon ’ s rank sum test with a significant level 

ρ = 0.05, respectively. 

Table 13 

Final rank of all the algorithms on the ZDT, WFG, and DTLZ problems. 

Problems 

Algorithms 

NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA AUDHEIA 

Rank Sum on ZDTs 21 23 19 25 10 14 7 

Rank Sum on WFGs 44 32 37 36 25 26 15 

Rank Sum on DTLZs 28 25 26 28 19 28 21 

Total Rank sum on all the Problems 93 80 82 89 54 68 43 

Final Rank on all the Problems 7 4 5 6 2 3 1 

Table 14 

Final comparisons of all the algorithms on the ZDT, WFG, and DTLZ problems. 

Problems 

Algorithms 

NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA 

ZDTs 0/5/0 0/5/0 0/4/1 1/4/0 1/2/2 0/4/1 

WFGs 0/9/0 1/8/0 2/5/2 0/8/1 2/5/2 0/7/2 

DTLZs 2/4/1 3/4/0 3/3/1 2/3/2 2/1/4 0/7/0 

better / worse / similar 2/18/1 4/17/0 5/12/4 3/11/3 5/8/8 0/18/3 

Final result (AUDHEIA vs other algorithms) better better better better better better 

 

 

 

 

 

 

 

 

Rank Sum, the SP performance of AUDHEIA is obviously better than that of other algorithms. HEIA and SMPSO are similar

and are ranked second and third, respectively. However, the result of MOEA/D is the worst. 

To further explore the SP performances of various algorithms, box-plots are plotted in Fig. 13 . The results show that

AUDHEIA has the smallest SP values, except on DTLZ1, DTLZ4 and DTLZ5. In addition, its box distances are also the lowest.

In addition, outliers seldom occur. Finally, we can draw the conclusion that AUDHEIA exhibits a better distribution and more

stable performance. Tables 13 and 14 list the IGD rank sums of NSGA-II, SPEA2, AbYSS, MOEA/D, SMPSO, HEIA and AUDHEIA

on all of the ZDT, WFG, and DTLZ test algorithms. When all of the test problems are considered, it is easy to see from the

final rank that AUDHEIA performs better than other problems. In addition, we have summed up the comparison results of

AUDHEIA with the other algorithms in Table 13 . The second-to-last line reveals the comparative results between AUDHEIA
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Fig. 13. Box-plots of the SP results obtained by AUDHEIA on (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4, (e) DTLZ5, (f) DTLZ6 and (b) DTLZ7. (1, 2, 3, 4, 5, 

6, and 7 in the horizontal axis stand for NSGAII, SPEA2, AbYSS, MOEA/D, SMPSO, HEIA and AUDHEIA.). 

Table 15 

Function calculation comparison of different algorithms. 

Algorithms Objective function number of times called Function number of times called Maximum value Minimum value Average values 

AUDHEIA 2600 2010 2900 1450 1860 

NSGAII-DLS [33] 3010 2240 3500 2030 2100 

NSGAII [9] 20,000 + 20,000 + 20,000 + 20,000 + 5150 

HMOEA/D [28] 13,200 9600 10,500 7050 6900 

NSGAII-els [5] 13,350 8550 17,250 13,200 3000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the others on all the test problems. Furthermore, the last line illustrates the final results of the comparative analyses.

From the above results, the performance of AUDHEIA is better than that of the other compared algorithms. Based on the

above analysis, it is concluded that AUDHEIA can be used to solve different test problems. In addition, when solving complex

problems, such as WFG problems, its advantages are more obvious. 

4.4.4. Comparisons of convergence speed 

To verify the convergence speed of AUDHEIA, the number of times that a function is called before the specified perfor-

mance index is reached is adopted in this paper. According to the experiments in reference [24] , the optimization is stopped

when an IGD value of 0.01 is reached, and then the number of times that the function was called is recorded. The results

of this experiment are shown in Table 15 . 

The average values of the numbers of times that the function is called after a ten-time continuous experimental study

are listed in Table 15 . Five indexes are used to evaluate the convergence speed. They are the objective function’s number

of times called, the functional number of times called, and the Maximum, Minimum, and Average values of times called.

In addition, four algorithms (NSGAII-DLS, NSGAII [9] , HMOEA/D [38] , and NSGAII-els [23] ) are used for comparison with

AUDHEIA. The parameters and results are all derived from [27] . From the simulation results, it can be seen that the numbers

of times the objective function and function of AUDHEIA are called appear to be the lowest. In addition, the results show

that NSGAII-DLS is similar to AUDHEIA with regard to the function’s number of times being called. HMOEA/D and NSGA-els

also have similar results. However, their objective function’s and function’s number of times called are significantly higher

than those of AUDHEIA. Beyond that, the results of NSGAII are above 20,0 0 0, which is the worst performance. We can also

see that AUDHEIA has the lowest maximum, minimum, and average values of the function’s computation time. According to

the above analysis, we can conclude that AUDHEIA can quickly converge to the PF true . 
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5. Discussion 

The goal of this paper is to increase the distribution of the individuals during iterations. Then, an adaptive uniform

distribution selection framework of AUDHEIA is proposed in this paper. According to the above analysis and results, the

following observations can be made. 

5.1. High convergence precision 

Convergence accuracy is the key issue for the evolutionary algorithm, and better diversity can improve it. In this paper, a

uniform distribution selection mechanism is proposed. Then, better diversity can be obtained, along with the improvement

of the distribution. Furthermore, the limit optimization variation strategy of the best individual can avoid falling into local

optimum, and then the global optimal solution can be better found. In Tables 13 and 14 , the results show that AUDHEIA can

search for more accurate solutions to obtain higher convergence accuracy. 

5.2. Better distribution 

The distribution is another important issue for the evolutionary algorithm. In this paper, the distribution enhancement

module is activated during the iteration process when the distribution is not satisfied in the corresponding interval. In

addition, the distribution of individuals change unceasingly during the iteration process, and the threshold is adjusted adap-

tively. In Tables 10, 12 , and 13 , the experimental results indicate that AUDHEIA exhibits better distribution and more stable

performance. 

5.3. Faster convergence speed 

Convergence speed is also an important issue for AUDHEIA. In this paper, the limit optimization variation strategy of the

best individual can avoid falling into local optima, and improve the search speed. In addition, the nondominated solutions

can quickly locate the Pareto front when individuals are evenly spread in iterations. From Table 15 , the results indicate that

AUDHEIA can quickly converge to the PF true . 

6. Conclusion 

This paper presents an adaptive hybrid evolutionary immune multi-objective algorithm based on a uniform distribution

selection mechanism. The experimental results show that the proposed AUDHEIA has a good approximation of PF true , and

the distribution of individuals is better than that of the other algorithms discussed in this paper. In addition, it has a faster

convergence speed. Compared with the other algorithms, the advantages of AUDHEIA are as shown below: 

1) A distribution measurement module is proposed to measure the distribution of the individu als. A standard thresh-

old is used to judging the distribution level. Because the distribution of individuals changes unceasingly during the

iteration process, the threshold is adjusted adaptively. When the number of clusters in the interval is less than the

threshold, the distribution enhancement module is activated. Otherwise, the intervals meet the distribution. Thus the

distribution of AUDHEIA is better than that of the others algorithms discussed in this paper. 

2) The individuals are mapped to the hyperplane that corresponds to the objective space, and the individuals are clus-

tered on this plane. In addition, the hyperplane is equally divided, and excellent individuals with the same number

are selected from every interval. After that, the selected individuals from different clusters are stored in an elitism

archive. Thus, the diversity of the population can be improved. 

3) Two variation strategies are used to supplement the insufficient individuals. The first strategy can effectively improve

the local search ability. The other one can avoid falling into local optima and can thus improve the search speed. In

addition, the individual distribution is more uniform during the iterative process. When very few better individuals

find the Pareto front, the rest of the individuals can be more quickly and evenly distributed on the Pareto front. Then,

the search speed can be improved. 

We also experimented on NSGAII with this adaptive uniform distribution method, which also achieved good application

results. Therefore, it can be verified that this method can be applied to other evolutionary algorithms to solve multi-objective

optimization problems. Although the performance of AUDHEIA is very promising, there are still several issues worth study-

ing for further improvements. Further study will be conducted in the future. First, when the sparse degree of PF true is

different or empty, the mechanism should be further improved. Second, a new method should be designed for dynamic

multi-objective optimization problems. Third, further studies on MOPs with more than three objectives [1,8] or in noisy

environments [37] are necessary. Moreover, we can also apply it to real-world applications [41] . 
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